摘要 当今的超精密机床坐标测量系统大多采用衍射光栅。光栅测量系统稳定性高,分辨率可达nm级。为了进一步获得超高的位置控制特性和加工表面质量,采用DSP细分,测量系统分辨率可达纳米级。...
当今的超精密机床坐标测量系统大多采用衍射光栅。光栅测量系统稳定性高,分辨率可达nm级。为了进一步获得超高的位置控制特性和加工表面质量,采用DSP细分,测量系统分辨率可达纳米级。纳米级重复定位精度超精密传动、驱动控制技术。为了实现光学级的确定性超精密加工,机床必须具有纳米级重复定位精度的刀具运动控制品质。伺服传动、驱动系统需消除一切非线性因数,特别是具有非线性特性的运动机构摩擦等效应。因此,采用气浮、液浮等无静摩擦效应轴承、导轨、平衡机构成了必然的选择。伺服运动控制器除了高分辨、高实时性要求外,控制算法模式也需不断进步。
开放式高性能CNC数控系统技术。从加工精度和效能出发,数控系统除了满足超精密机床控制显示分辨率、精度,实时性等要求,还需扩展在机测量、对刀、补偿等许多辅助功能。通用数控系统难以满足要求。所以,超精密机床现基本都采用PC+运动控制器研制开放式CNC数控系统模式。
高精度气、液、温度、振动等工作环境控制技术。机床隔振及水平姿态控制。振动对超精密加工的影响非常明显,远驶的汽车都有影响。机床隔振需采取特殊的地基处理和机床本体气浮隔振复合措施。机床体气浮隔振系统还需具备自动调平功能,以防止机床加工中水平状态变化对加工的影响。对于LODTM隔振要求高的机床,隔振系统的自然频率要求在1HZ以下。
温度控制。温度对加工精度的影响非常大。因此,LODTM机床温控要求极其高。
应用展望
超精密加工机床系统与技术总的发展趋势:更高的加工表面质量、面形精度;朝大、小尺度两个方向发展;提高工件复杂形面、不同材料的加工适应性等。
大的尺度发展应用如适应未来空、天基强激光武器轻质、高刚性金属基主反射镜加工的超大型SLODTM机床;地基超大口径深空望远镜(如欧洲的Euro50(Φ50m)、OWL (Φ100m))拼接式离轴非球面镜(数米尺寸)加工的多轴超精密磨削加工等。
近年来,太赫兹(THZ)作为一门新兴技术得到了广泛重视,是未来超精密加工技术与机床极为广大和重要的应用领域。在大的尺度方面,太赫兹应用不亚于前列的大的发展需求,如太赫兹天线镜面加工需求。在小的尺度方面,太赫兹系统中的微型波纹喇叭天线(毫米级复杂形状内腔,微米级加工精度)是未来所需解决的超精密加工难题之一。在加工面形的复杂度方面,由于太赫兹波束控制元件表面电磁特性,其设计元件面形更具复杂性,如非对称赋形自由曲面等。在加工材料方面,太赫兹应用更具多样性。
发展超精密加工机床系统,我国需重点突破解决的关键技术包括:高精度、高分辨率、高稳定、大位移坐标测量系统,先进控制算法(自适应控制、二阶动态无差控制等)的高性能多轴运动控制器,工件在机超精密测量与补偿技术,超高精度环境控制技术等。